MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stable nonlinear identification from noisy repeated experiments via convex optimization

Author(s)
Tobenkin, Mark M.; Manchester, Ian R.; Megretski, Alexandre
Thumbnail
DownloadMegretski_Stable nonlinear.pdf (467.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper introduces new techniques for using convex optimization to fit input-output data to a class of stable nonlinear dynamical models. We present an algorithm that guarantees consistent estimates of models in this class when a small set of repeated experiments with suitably independent measurement noise is available. Stability of the estimated models is guaranteed without any assumptions on the input-output data. We first present a convex optimization scheme for identifying stable state-space models from empirical moments. Next, we provide a method for using repeated experiments to remove the effect of noise on these moment and model estimates. The technique is demonstrated on a simple simulated example.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/90399
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2013 American Control Conference
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Tobenkin, Mark M., Ian R. Manchester, and Alexandre Megretski. “Stable Nonlinear Identification from Noisy Repeated Experiments via Convex Optimization.” 2013 American Control Conference (June 2013).
Version: Original manuscript
ISBN
978-1-4799-0178-4
978-1-4799-0177-7
978-1-4799-0175-3
ISSN
0743-1619

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.