Show simple item record

dc.contributor.authorGlassman, Elena L.
dc.contributor.authorSingh, Rishabh
dc.contributor.authorMiller, Robert C.
dc.date.accessioned2014-09-26T17:54:57Z
dc.date.available2014-09-26T17:54:57Z
dc.date.issued2014-03
dc.identifier.isbn9781450326698
dc.identifier.urihttp://hdl.handle.net/1721.1/90409
dc.description.abstractOpen-ended homework problems such as coding assignments give students a broad range of freedom for the design of solutions. We aim to use the diversity in correct solutions to enhance student learning by automatically suggesting alternate solutions. Our approach is to perform a two-level hierarchical clustering of student solutions to first partition them based on the choice of algorithm and then partition solutions implementing the same algorithm based on low-level implementation details. Our initial investigations in domains of introductory programming and computer architecture demonstrate that we need two different classes of features to perform effective clustering at the two levels, namely abstract features and concrete features.en_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2556325.2567865en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleFeature engineering for clustering student solutionsen_US
dc.typeArticleen_US
dc.identifier.citationElena L. Glassman, Rishabh Singh, and Robert C. Miller. 2014. Feature engineering for clustering student solutions. In Proceedings of the first ACM conference on Learning @ scale conference (L@S '14). ACM, New York, NY, USA, 171-172.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGlassman, Elena L.en_US
dc.contributor.mitauthorSingh, Rishabhen_US
dc.contributor.mitauthorMiller, Robert C.en_US
dc.relation.journalProceedings of the first ACM conference on Learning @ scale conference (L@S '14)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGlassman, Elena L.; Singh, Rishabh; Miller, Robert C.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5178-3496
dc.identifier.orcidhttps://orcid.org/0000-0002-0442-691X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record