MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sparse Filter Design Under a Quadratic Constraint: Low-Complexity Algorithms

Author(s)
Wei, Dennis; Sestok, Charles K.; Oppenheim, Alan V.
Thumbnail
DownloadOppenheim_sparse filter.pdf (4.232Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper considers three problems in sparse filter design, the first involving a weighted least-squares constraint on the frequency response, the second a constraint on mean squared error in estimation, and the third a constraint on signal-to-noise ratio in detection. The three problems are unified under a single framework based on sparsity maximization under a quadratic performance constraint. Efficient and exact solutions are developed for specific cases in which the matrix in the quadratic constraint is diagonal, block-diagonal, banded, or has low condition number. For the more difficult general case, a low-complexity algorithm based on backward greedy selection is described with emphasis on its efficient implementation. Examples in wireless channel equalization and minimum-variance distortionless-response beamforming show that the backward selection algorithm yields optimally sparse designs in many instances while also highlighting the benefits of sparse design.
Date issued
2013-01
URI
http://hdl.handle.net/1721.1/90495
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Signal Processing
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Wei, Dennis, Charles K. Sestok, and Alan V. Oppenheim. “Sparse Filter Design Under a Quadratic Constraint: Low-Complexity Algorithms.” IEEE Transactions on Signal Processing 61, no. 4 (February 2013): 857–870.
Version: Author's final manuscript
ISSN
1053-587X
1941-0476

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.