MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Power conversion architecture for grid interface at high switching frequency

Author(s)
Lim, Seungbum; Otten, David M.; Perreault, David J.
Thumbnail
DownloadPerreault_Power-conversion.pdf (2.399Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper presents a new power conversion architecture for single-phase grid interface. The proposed architecture is suitable for realizing miniaturized ac-dc converters operating at high frequencies (HF, above 3 MHz) and high power factor, without the need for electrolytic capacitors. It comprises of a line-frequency rectifier, a stack of capacitors, a set of regulating converters, and a power combining converter (or set of power combining converters). The regulating converters have inputs connected to capacitors on the capacitor stack, and provide regulated outputs while also achieving high power factor, with twice-line-frequency energy buffered on the capacitor stack. The power combining converter combines power from the individual regulated outputs to a single output, and may also provide isolation. While this architecture can be utilized with a variety of circuit topologies, it is especially suited for systems operating at HF (above 3 MHz), and we introduce circuit implementations that enable efficient operation in this range. The proposed approach is demonstrated for an LED driver operating from 120 V[subscript ac], and supplying a 35 V, 30 W output. The prototype converter operates at a (variable) switching frequency of 5-10 MHz and an efficiency of > 93%. The converter achieves a displacement power density of 130 W/in[superscript 3], while providing a 0.89 power factor, without the use of electrolytic capacitors.
Date issued
2014-03
URI
http://hdl.handle.net/1721.1/90550
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Research Laboratory of Electronics; Massachusetts Institute of Technology. School of Engineering
Journal
Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition (APEC 2014)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Lim, Seungbum, David M. Otten, and David J. Perreault. “Power Conversion Architecture for Grid Interface at High Switching Frequency.” 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014 (March 2014).
Version: Author's final manuscript
ISBN
978-1-4799-2325-0

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.