MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High-Precision Measurements of [superscript 33]S and [superscript 34]S Fractionation during SO[subscript 2] Oxidation Reveal Causes of Seasonality in SO[subscript 2] and Sulfate Isotopic Composition

Author(s)
Harris, Eliza; Sinha, Barbel; Hoppe, Peter; Ono, Shuhei
Thumbnail
DownloadOno - Harris article.pdf (1.386Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
This study presents high-precision isotope ratio-mass spectrometric measurements of isotopic fractionation during oxidation of SO[subscript 2] by OH radicals in the gas phase and H[subscript 2]O[subscript 2] and transition metal ion catalysis (TMI-catalysis) in the aqueous phase. Although temperature dependence of fractionation factors was found to be significant for H[subscript 2]O[subscript 2] and TMI-catalyzed pathways, results from a simple 1D model revealed that changing partitioning between oxidation pathways was the dominant cause of seasonality in the isotopic composition of sulfate relative to SO[subscript 2]. Comparison of modeled seasonality with observations shows the TMI-catalyzed oxidation pathway is underestimated by more than an order of magnitude in all current atmospheric chemistry models. The three reactions showed an approximately mass-dependent relationship between [superscript 33]S and [superscript 34]S. However, the slope of the mass-dependent line was significantly different to 0.515 for the OH and TMI-catalyzed pathways, reflecting kinetic versus equilibrium control of isotopic fractionation. For the TMI-catalyzed pathway, both temperature dependence and [superscript 33]S/[superscript 34]S relationship revealed a shift in the rate-limiting reaction step from dissolution at lower temperatures to TMI-sulfite complex formation at higher temperatures. 1D model results showed that although individual reactions could produce Δ[superscript 33]S values between −0.15 and +0.2‰, seasonal changes in partitioning between oxidation pathways caused average sulfate Δ[superscript 33]S values of 0‰ throughout the year.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/90584
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Environmental Science & Technology
Publisher
American Chemical Society (ACS)
Citation
Harris, Eliza, Barbel Sinha, Peter Hoppe, and Shuhei Ono. “High-Precision Measurements of [superscript 33]S and [superscript 34]S Fractionation during SO[subscript 2] Oxidation Reveal Causes of Seasonality in SO[subscript 2] and Sulfate Isotopic Composition.” Environ. Sci. Technol. 47, no. 21 (November 5, 2013): 12174–12183.
Version: Author's final manuscript
ISSN
0013-936X
1520-5851

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.