Show simple item record

dc.contributor.authorReyes Castro, Luis I.
dc.contributor.authorChaudhari, Pratik Anil
dc.contributor.authorTumova, Jana
dc.contributor.authorKaraman, Sertac
dc.contributor.authorFrazzoli, Emilio
dc.contributor.authorRus, Daniela L.
dc.date.accessioned2014-10-07T18:52:06Z
dc.date.available2014-10-07T18:52:06Z
dc.date.issued2013-12
dc.identifier.isbn978-1-4673-5717-3
dc.identifier.isbn978-1-4673-5714-2
dc.identifier.isbn978-1-4799-1381-7
dc.identifier.issn0743-1546
dc.identifier.urihttp://hdl.handle.net/1721.1/90595
dc.description.abstractThis paper studies the problem of control strategy synthesis for dynamical systems with differential constraints to fulfill a given reachability goal while satisfying a set of safety rules. Particular attention is devoted to goals that become feasible only if a subset of the safety rules are violated. The proposed algorithm computes a control law, that minimizes the level of unsafety while the desired goal is guaranteed to be reached. This problem is motivated by an autonomous car navigating an urban environment while following rules of the road such as “always travel in right lane” and “do not change lanes frequently”. Ideas behind sampling based motion-planning algorithms, such as Probabilistic Road Maps (PRMs) and Rapidly-exploring Random Trees (RRTs), are employed to incrementally construct a finite concretization of the dynamics as a durational Kripke structure. In conjunction with this, a weighted finite automaton that captures the safety rules is used in order to find an optimal trajectory that minimizes the violation of safety rules. We prove that the proposed algorithm guarantees asymptotic optimality, i.e., almost-sure convergence to optimal solutions. We present results of simulation experiments and an implementation on an autonomous urban mobility-on-demand system.en_US
dc.description.sponsorshipMichigan/AFRL Collaborative Center in Control Scienceen_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA 8650-07-2-3744)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CNS-1016213)en_US
dc.description.sponsorshipNissan Motor Companyen_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CDC.2013.6760374en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleIncremental sampling-based algorithm for minimum-violation motion planningen_US
dc.typeArticleen_US
dc.identifier.citationReyes Castro, Luis I., Pratik Chaudhari, Jana Tumova, Sertac Karaman, Emilio Frazzoli, and Daniela Rus. “Incremental Sampling-Based Algorithm for Minimum-Violation Motion Planning.” 52nd IEEE Conference on Decision and Control (December 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. School of Engineeringen_US
dc.contributor.mitauthorReyes Castro, Luis I.en_US
dc.contributor.mitauthorChaudhari, Pratik Anilen_US
dc.contributor.mitauthorKaraman, Sertacen_US
dc.contributor.mitauthorFrazzoli, Emilioen_US
dc.contributor.mitauthorRus, Daniela L.en_US
dc.relation.journalProceedings of the 52nd IEEE Conference on Decision and Controlen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsReyes Castro, Luis I.; Chaudhari, Pratik; Tumova, Jana; Karaman, Sertac; Frazzoli, Emilio; Rus, Danielaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5473-3566
dc.identifier.orcidhttps://orcid.org/0000-0002-2225-7275
dc.identifier.orcidhttps://orcid.org/0000-0002-0505-1400
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record