MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

City-scale traffic estimation from a roving sensor network

Author(s)
Aslam, Javed; Lim, Sejoon; Pan, Xinghao; Rus, Daniela L.
Thumbnail
DownloadRus_City-scale traffic.pdf (4.549Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Traffic congestion, volumes, origins, destinations, routes, and other road-network performance metrics are typically collected through survey data or via static sensors such as traffic cameras and loop detectors. This information is often out-of-date, difficult to collect and aggregate, difficult to analyze and quantify, or all of the above. In this paper we conduct a case study that demonstrates that it is possible to accurately infer traffic volume through data collected from a roving sensor network of taxi probes that log their locations and speeds at regular intervals. Our model and inference procedures can be used to analyze traffic patterns and conditions from historical data, as well as to infer current patterns and conditions from data collected in real-time. As such, our techniques provide a powerful new sensor network approach for traffic visualization, analysis, and urban planning.
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/90617
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. School of Engineering
Journal
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (SenSys '12)
Publisher
Association for Computing Machinery (ACM)
Citation
Javed Aslam, Sejoon Lim, Xinghao Pan, and Daniela Rus. 2012. City-scale traffic estimation from a roving sensor network. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems (SenSys '12). ACM, New York, NY, USA, 141-154.
Version: Author's final manuscript
ISBN
9781450311694

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.