MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems

Author(s)
Sanchez, Daniel; Kozyrakis, Christos
Thumbnail
DownloadSanchez_Z sim.pdf (454.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Architectural simulation is time-consuming, and the trend towards hundreds of cores is making sequential simulation even slower. Existing parallel simulation techniques either scale poorly due to excessive synchronization, or sacrifice accuracy by allowing event reordering and using simplistic contention models. As a result, most researchers use sequential simulators and model small-scale systems with 16-32 cores. With 100-core chips already available, developing simulators that scale to thousands of cores is crucial. We present three novel techniques that, together, make thousand-core simulation practical. First, we speed up detailed core models (including OOO cores) with instruction-driven timing models that leverage dynamic binary translation. Second, we introduce bound-weave, a two-phase parallelization technique that scales parallel simulation on multicore hosts efficiently with minimal loss of accuracy. Third, we implement lightweight user-level virtualization to support complex workloads, including multiprogrammed, client-server, and managed-runtime applications, without the need for full-system simulation, sidestepping the lack of scalable OSs and ISAs that support thousands of cores. We use these techniques to build zsim, a fast, scalable, and accurate simulator. On a 16-core host, zsim models a 1024-core chip at speeds of up to 1,500 MIPS using simple cores and up to 300 MIPS using detailed OOO cores, 2-3 orders of magnitude faster than existing parallel simulators. Simulator performance scales well with both the number of modeled cores and the number of host cores. We validate zsim against a real Westmere system on a wide variety of workloads, and find performance and microarchitectural events to be within a narrow range of the real system.
Date issued
2013
URI
http://hdl.handle.net/1721.1/90820
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 40th Annual International Symposium on Computer Architecture - ISCA '13
Publisher
Association for Computing Machinery
Citation
Sanchez, Daniel, and Christos Kozyrakis. “ZSim: Fast and Accurate Microarchitectural Simulation of Thousand-Core Systems.” Proceedings of the 40th Annual International Symposium on Computer Architecture - ISCA ’13 (2013), Tel-Aviv, Israel, June 23-27, 2013, ACM, p.475-486.
Version: Author's final manuscript
ISBN
9781450320795
ISSN
1063-6897

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.