Show simple item record

dc.contributor.authorPosa, Michael Antonio
dc.contributor.authorCantu, Cecilia
dc.contributor.authorTedrake, Russell Louis
dc.date.accessioned2014-10-14T13:36:00Z
dc.date.available2014-10-14T13:36:00Z
dc.date.issued2013-10
dc.identifier.issn0278-3649
dc.identifier.issn1741-3176
dc.identifier.urihttp://hdl.handle.net/1721.1/90907
dc.description.abstractDirect methods for trajectory optimization are widely used for planning locally optimal trajectories of robotic systems. Many critical tasks, such as locomotion and manipulation, often involve impacting the ground or objects in the environment. Most state-of-the-art techniques treat the discontinuous dynamics that result from impacts as discrete modes and restrict the search for a complete path to a specified sequence through these modes. Here we present a novel method for trajectory planning of rigid-body systems that contact their environment through inelastic impacts and Coulomb friction. This method eliminates the requirement for a priori mode ordering. Motivated by the formulation of multi-contact dynamics as a Linear Complementarity Problem for forward simulation, the proposed algorithm poses the optimization problem as a Mathematical Program with Complementarity Constraints. We leverage Sequential Quadratic Programming to naturally resolve contact constraint forces while simultaneously optimizing a trajectory that satisfies the complementarity constraints. The method scales well to high-dimensional systems with large numbers of possible modes. We demonstrate the approach on four increasingly complex systems: rotating a pinned object with a finger, simple grasping and manipulation, planar walking with the Spring Flamingo robot, and high-speed bipedal running on the FastRunner platform.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation Program (Grant W91CRB-11-1-0001)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-0746194)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-1161909)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant IIS-0915148)en_US
dc.language.isoen_US
dc.publisherSage Publicationsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0278364913506757en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleA direct method for trajectory optimization of rigid bodies through contacten_US
dc.typeArticleen_US
dc.identifier.citationPosa, M., C. Cantu, and R. Tedrake. “A Direct Method for Trajectory Optimization of Rigid Bodies through Contact.” The International Journal of Robotics Research 33, no. 1 (October 21, 2013): 69–81.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorPosa, Michael Antonioen_US
dc.contributor.mitauthorCantu, Ceciliaen_US
dc.contributor.mitauthorTedrake, Russell Louisen_US
dc.relation.journalThe International Journal of Robotics Researchen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsPosa, M.; Cantu, C.; Tedrake, R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0599-385X
dc.identifier.orcidhttps://orcid.org/0000-0002-8712-7092
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record