Show simple item record

dc.contributor.authorDai, Hongkai
dc.contributor.authorTedrake, Russell Louis
dc.date.accessioned2014-10-14T13:46:42Z
dc.date.available2014-10-14T13:46:42Z
dc.date.issued2013-05
dc.identifier.isbn978-1-4673-5643-5
dc.identifier.isbn978-1-4673-5641-1
dc.identifier.issn1050-4729
dc.identifier.urihttp://hdl.handle.net/1721.1/90909
dc.description.abstractIn this paper we seek to quantify and explicitly optimize the robustness of a control system for a robot walking on terrain with uncertain geometry. Geometric perturbations to the terrain enter the equations of motion through a relocation of the hybrid event “guards” which trigger an impact event; these perturbations can have a large effect on the stability of the robot and do not fit into the traditional robust control analysis and design methodologies without additional machinery. We attempt to provide that machinery here. In particular, we quantify the robustness of the system to terrain perturbations by defining an L[subscript 2] gain from terrain perturbations to deviations from the nominal limit cycle. We show that the solution to a periodic dissipation inequality provides a sufficient upper bound on this gain for a linear approximation of the dynamics around the limit cycle, and we formulate a semidefinite programming problem to compute the L[subscript 2] gain for the system with a fixed linear controller. We then use either binary search or an iterative optimization method to construct a linear robust controller and to minimize the L[subscript 2] gain. The simulation results on canonical robots suggest that the L[subscript 2] gain is closely correlated to the actual number of steps traversed on the rough terrain, and our controller can improve the robot's robustness to terrain disturbances.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Contract CNS-0960061)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation Program (BAA-10-65-M3-FP-024)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2013.6631010en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleL[subscript 2]-gain optimization for robust bipedal walking on unknown terrainen_US
dc.typeArticleen_US
dc.identifier.citationDai, Hongkai, and Russ Tedrake. “L[subscript 2]-Gain Optimization for Robust Bipedal Walking on Unknown Terrain.” 2013 IEEE International Conference on Robotics and Automation (May 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorDai, Hongkaien_US
dc.contributor.mitauthorTedrake, Russell Louisen_US
dc.relation.journalProceedings of the 2013 IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsDai, Hongkai; Tedrake, Russen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8712-7092
dc.identifier.orcidhttps://orcid.org/0000-0001-9363-3701
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record