Show simple item record

dc.contributor.authorDean, Dennis A.
dc.contributor.authorAdler, Gail K.
dc.contributor.authorNguyen, David P.
dc.contributor.authorKlerman, Elizabeth B.
dc.date.accessioned2014-10-17T18:43:46Z
dc.date.available2014-10-17T18:43:46Z
dc.date.issued2014-09
dc.date.submitted2012-09
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/1721.1/90972
dc.description.sponsorshipNational Space Biomedical Research Institute (NASA NCC 9-58 HFP01603)en_US
dc.description.sponsorshipNational Space Biomedical Research Institute (NASA NCC 9-58 HPF00405)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH NCRR-GCRC-M01-RR-02635)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR F49620-95-1-0388)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR FA9550-06-0080)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH P01-AG09975)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH T32 HL07901-10)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH F31-GM095340-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH K24-HL105664)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH K02-HD045459)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH RC2-HL101340)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01-AR43130)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH K24-HL103845)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01-MH071847)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 HL098433)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH R01 HL098433-02S1)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pone.0104087en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePublic Library of Scienceen_US
dc.titleBiological Time Series Analysis Using a Context Free Language: Applicability to Pulsatile Hormone Dataen_US
dc.typeArticleen_US
dc.identifier.citationDean, Dennis A., Gail K. Adler, David P. Nguyen, and Elizabeth B. Klerman. “Biological Time Series Analysis Using a Context Free Language: Applicability to Pulsatile Hormone Data.” Edited by Ioannis P. Androulakis. PLoS ONE 9, no. 9 (September 3, 2014): e104087.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Neuroscience Statistics Research Laboratoryen_US
dc.contributor.mitauthorDean, Dennis A.en_US
dc.contributor.mitauthorNguyen, David P.en_US
dc.relation.journalPLoS ONEen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWe present a novel approach for analyzing biological time-series data using a context-free language (CFL) representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP) analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals.en_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record