MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Apoptosis in C. elegans

Author(s)
Hirose, Takashi; Horvitz, Howard Robert
Thumbnail
DownloadHirose-2014-The Translational Re.pdf (1.833Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The proper regulation of apoptosis requires precise spatial and temporal control of gene expression. While the transcriptional and translational activation of pro-apoptotic genes is known to be crucial to triggering apoptosis, how different mechanisms cooperate to drive apoptosis is largely unexplored. Here we report that pro-apoptotic transcriptional and translational regulators act in distinct pathways to promote programmed cell death. We show that the evolutionarily conserved C. elegans translational regulators GCN-1 and ABCF-3 contribute to promoting the deaths of most somatic cells during development. GCN-1 and ABCF-3 are not obviously involved in the physiological germ-cell deaths that occur during oocyte maturation. By striking contrast, these proteins play an essential role in the deaths of germ cells in response to ionizing irradiation. GCN-1 and ABCF-3 are similarly co-expressed in many somatic and germ cells and physically interact in vivo, suggesting that GCN-1 and ABCF-3 function as members of a protein complex. GCN-1 and ABCF-3 are required for the basal level of phosphorylation of eukaryotic initiation factor 2α (eIF2α), an evolutionarily conserved regulator of mRNA translation. The S. cerevisiae homologs of GCN-1 and ABCF-3, which are known to control eIF2α phosphorylation, can substitute for the worm proteins in promoting somatic cell deaths in C. elegans. We conclude that GCN-1 and ABCF-3 likely control translational initiation in C. elegans. GCN-1 and ABCF-3 act independently of the anti-apoptotic BCL-2 homolog CED-9 and of transcriptional regulators that upregulate the pro-apoptotic BH3-only gene egl-1. Our results suggest that GCN-1 and ABCF-3 function in a pathway distinct from the canonical CED-9-regulated cell-death execution pathway. We propose that the translational regulators GCN-1 and ABCF-3 maternally contribute to general apoptosis in C. elegans via a novel pathway and that the function of GCN-1 and ABCF-3 in apoptosis might be evolutionarily conserved.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/90973
Department
Massachusetts Institute of Technology. Department of Biology
Journal
PLoS Genetics
Publisher
Public Library of Science
Citation
Hirose, Takashi, and H. Robert Horvitz. “The Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Apoptosis in C. Elegans.” Edited by Andrew D. Chisholm. PLoS Genet 10, no. 8 (August 7, 2014): e1004512.
Version: Final published version
ISSN
1553-7404
1553-7390

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.