MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the Quality of Actions

Author(s)
Pirsiavash, Hamed; Torralba, Antonio; Vondrick, Carl Martin
Thumbnail
DownloadTorralba_Assessing the.pdf (21.00Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
While recent advances in computer vision have provided reliable methods to recognize actions in both images and videos, the problem of assessing how well people perform actions has been largely unexplored in computer vision. Since methods for assessing action quality have many real-world applications in healthcare, sports, and video retrieval, we believe the computer vision community should begin to tackle this challenging problem. To spur progress, we introduce a learning-based framework that takes steps towards assessing how well people perform actions in videos. Our approach works by training a regression model from spatiotemporal pose features to scores obtained from expert judges. Moreover, our approach can provide interpretable feedback on how people can improve their action. We evaluate our method on a new Olympic sports dataset, and our experiments suggest our framework is able to rank the athletes more accurately than a non-expert human. While promising, our method is still a long way to rivaling the performance of expert judges, indicating that there is significant opportunity in computer vision research to improve on this difficult yet important task.
Date issued
2014
URI
http://hdl.handle.net/1721.1/90990
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Computer Vision – ECCV 2014
Publisher
Springer-Verlag
Citation
Pirsiavash, Hamed, Carl Vondrick, and Antonio Torralba. “Assessing the Quality of Actions.” Lecture Notes in Computer Science (2014): 556–571.
Version: Author's final manuscript
ISBN
978-3-319-10598-7
978-3-319-10599-4
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.