Show simple item record

dc.contributor.authorXiao, Jianxiong
dc.contributor.authorTorralba, Antonio
dc.contributor.authorOwens, Andrew Hale
dc.contributor.authorFreeman, William T.
dc.date.accessioned2014-10-20T18:14:37Z
dc.date.available2014-10-20T18:14:37Z
dc.date.issued2013-12
dc.identifier.isbn978-1-4799-2840-8
dc.identifier.issn1550-5499
dc.identifier.urihttp://hdl.handle.net/1721.1/91001
dc.description.abstractWe present a data-driven method for building dense 3D reconstructions using a combination of recognition and multi-view cues. Our approach is based on the idea that there are image patches that are so distinctive that we can accurately estimate their latent 3D shapes solely using recognition. We call these patches shape anchors, and we use them as the basis of a multi-view reconstruction system that transfers dense, complex geometry between scenes. We "anchor" our 3D interpretation from these patches, using them to predict geometry for parts of the scene that are relatively ambiguous. The resulting algorithm produces dense reconstructions from stereo point clouds that are sparse and noisy, and we demonstrate it on a challenging dataset of real-world, indoor scenes.en_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant CGV-1212928)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2013.461en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleShape Anchors for Data-Driven Multi-view Reconstructionen_US
dc.typeArticleen_US
dc.identifier.citationOwens, Andrew, Jianxiong Xiao, Antonio Torralba, and William Freeman. “Shape Anchors for Data-Driven Multi-View Reconstruction.” 2013 IEEE International Conference on Computer Vision (December 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorOwens, Andrew Haleen_US
dc.contributor.mitauthorTorralba, Antonioen_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalProceedings of the 2013 IEEE International Conference on Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsOwens, Andrew; Xiao, Jianxiong; Torralba, Antonio; Freeman, Williamen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9020-9593
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record