Show simple item record

dc.contributor.authorXiao, Jianxiong
dc.contributor.authorTorralba, Antonio
dc.contributor.authorOwens, Andrew Hale
dc.date.accessioned2014-10-20T18:26:14Z
dc.date.available2014-10-20T18:26:14Z
dc.date.issued2013-12
dc.identifier.isbn978-1-4799-2840-8
dc.identifier.issn1550-5499
dc.identifier.urihttp://hdl.handle.net/1721.1/91003
dc.description.abstractExisting scene understanding datasets contain only a limited set of views of a place, and they lack representations of complete 3D spaces. In this paper, we introduce SUN3D, a large-scale RGB-D video database with camera pose and object labels, capturing the full 3D extent of many places. The tasks that go into constructing such a dataset are difficult in isolation -- hand-labeling videos is painstaking, and structure from motion (SfM) is unreliable for large spaces. But if we combine them together, we make the dataset construction task much easier. First, we introduce an intuitive labeling tool that uses a partial reconstruction to propagate labels from one frame to another. Then we use the object labels to fix errors in the reconstruction. For this, we introduce a generalization of bundle adjustment that incorporates object-to-object correspondences. This algorithm works by constraining points for the same object from different frames to lie inside a fixed-size bounding box, parameterized by its rotation and translation. The SUN3D database, the source code for the generalized bundle adjustment, and the web-based 3D annotation tool are all available at http://sun3d.cs.princeton.edu.en_US
dc.description.sponsorshipAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshipen_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (N000141010933)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICCV.2013.458en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labelsen_US
dc.typeArticleen_US
dc.identifier.citationXiao, Jianxiong, Andrew Owens, and Antonio Torralba. “SUN3D: A Database of Big Spaces Reconstructed Using SfM and Object Labels.” 2013 IEEE International Conference on Computer Vision (December 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorOwens, Andrew Haleen_US
dc.contributor.mitauthorTorralba, Antonioen_US
dc.relation.journalProceedings of the 2013 IEEE International Conference on Computer Visionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsXiao, Jianxiong; Owens, Andrew; Torralba, Antonioen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9020-9593
dc.identifier.orcidhttps://orcid.org/0000-0003-4915-0256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record