Show simple item record

dc.contributor.authorBrunetti, Philip M.
dc.contributor.authorWimmer, Ralf D.
dc.contributor.authorLiang, Li
dc.contributor.authorSiegle, Joshua H.
dc.contributor.authorVoigts, Jakob
dc.contributor.authorHalassa, Michael M.
dc.contributor.authorWilson, Matthew A.
dc.date.accessioned2014-10-21T13:17:19Z
dc.date.available2014-10-21T13:17:19Z
dc.date.issued2014-09
dc.identifier.issn1940-087X
dc.identifier.urihttp://hdl.handle.net/1721.1/91010
dc.description.abstractThe number of physiological investigations in the mouse, mus musculus, has experienced a recent surge, paralleling the growth in methods of genetic targeting for microcircuit dissection and disease modeling. The introduction of optogenetics, for example, has allowed for bidirectional manipulation of genetically-identified neurons, at an unprecedented temporal resolution. To capitalize on these tools and gain insight into dynamic interactions among brain microcircuits, it is essential that one has the ability to record from ensembles of neurons deep within the brain of this small rodent, in both head-fixed and freely behaving preparations. To record from deep structures and distinct cell layers requires a preparation that allows precise advancement of electrodes towards desired brain regions. To record neural ensembles, it is necessary that each electrode be independently movable, allowing the experimenter to resolve individual cells while leaving neighboring electrodes undisturbed. To do both in a freely behaving mouse requires an electrode drive that is lightweight, resilient, and highly customizable for targeting specific brain structures. A technique for designing and fabricating miniature, ultralight weight, microdrive electrode arrays that are individually customizable and easily assembled from commercially available parts is presented. These devices are easily scalable and can be customized to the structure being targeted; it has been used successfully to record from thalamic and cortical regions in a freely behaving animal during natural behavior.en_US
dc.description.sponsorshipSimons Foundationen_US
dc.description.sponsorshipNational Institute of Neurological Disorders and Stroke (U.S.) (NIH Pathway to Independence Career Award)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.)en_US
dc.language.isoen_US
dc.publisherMyJoVE Corporationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3791/51675en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/en_US
dc.sourceMyJoVE Corporationen_US
dc.titleDesign and Fabrication of Ultralight Weight, Adjustable Multi-electrode Probes for Electrophysiological Recordings in Miceen_US
dc.typeArticleen_US
dc.identifier.citationBrunetti, Philip M., Ralf D. Wimmer, Li Liang, Joshua H. Siegle, Jakob Voigts, Matthew Wilson, and Michael M. Halassa. “Design and Fabrication of Ultralight Weight, Adjustable Multi-Electrode Probes for Electrophysiological Recordings in Mice.” JoVE no. 91 (2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorSiegle, Joshua H.en_US
dc.contributor.mitauthorVoigts, Jakoben_US
dc.contributor.mitauthorWilson, Matthew A.en_US
dc.relation.journalJournal of Visualized Experimentsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBrunetti, Philip M.; Wimmer, Ralf D.; Liang, Li; Siegle, Joshua H.; Voigts, Jakob; Wilson, Matthew; Halassa, Michael M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-5174-7214
dc.identifier.orcidhttps://orcid.org/0000-0001-7149-3584
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record