Show simple item record

dc.contributor.authorLiu, Ying
dc.contributor.authorWillsky, Alan S.
dc.date.accessioned2014-10-21T15:24:40Z
dc.date.available2014-10-21T15:24:40Z
dc.date.issued2013-07
dc.identifier.isbn978-1-4799-0446-4
dc.identifier.issn2157-8095
dc.identifier.urihttp://hdl.handle.net/1721.1/91025
dc.description.abstractFor inference in Gaussian graphical models with cycles, loopy belief propagation (LBP) performs well for some graphs, but often diverges or has slow convergence. When LBP does converge, the variance estimates are incorrect in general. The feedback message passing (FMP) algorithm has been proposed to enhance the convergence and accuracy of inference. In FMP, standard LBP is run twice on the subgraph excluding the pseudo-FVS (a set of nodes that breaks most crucial cycles) while nodes in the pseudo-FVS use a different protocol. In this paper, we propose recursive FMP, a purely distributed extension of FMP, where all nodes use the same message-passing protocol. An inference problem on the entire graph is recursively reduced to those on smaller subgraphs in a distributed manner. One advantage of this recursive approach compared with FMP is that there is only one active feedback node at a time, so centralized communication among feedback nodes can be turned into message broadcasting from the single feedback node. We characterize this algorithm using walk-sum analysis and provide theoretical results for convergence and accuracy. We also demonstrate the performance using both simulated models on grids and large-scale sea surface height anomaly data.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-12-1-0287)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISIT.2013.6620673en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleRecursive FMP for distributed inference in Gaussian graphical modelsen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Ying, and Alan S. Willsky. “Recursive FMP for Distributed Inference in Gaussian Graphical Models.” 2013 IEEE International Symposium on Information Theory (July 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorLiu, Yingen_US
dc.contributor.mitauthorWillsky, Alan S.en_US
dc.relation.journalProceedings of the 2013 IEEE International Symposium on Information Theoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLiu, Ying; Willsky, Alan S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record