Show simple item record

dc.contributor.authorLiu, Ying
dc.contributor.authorKosut, Oliver
dc.contributor.authorWillsky, Alan S.
dc.date.accessioned2014-10-21T17:02:47Z
dc.date.available2014-10-21T17:02:47Z
dc.date.issued2013-07
dc.identifier.isbn978-1-4799-0446-4
dc.identifier.issn2157-8095
dc.identifier.urihttp://hdl.handle.net/1721.1/91051
dc.description.abstractThe problem of efficiently drawing samples from a Gaussian graphical model or Gaussian Markov random field is studied. We introduce the subgraph perturbation sampling algorithm, which makes use of any pre-existing tractable inference algorithm for a subgraph by perturbing this algorithm so as to yield asymptotically exact samples for the intended distribution. The subgraph can have any structure for which efficient inference algorithms exist: for example, tree-structured, low tree-width, or having a small feedback vertex set. The experimental results demonstrate that this subgraph perturbation algorithm efficiently yields accurate samples for many graph topologies.en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (Grant FA9550-12-1-0287)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ISIT.2013.6620676en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleSampling from Gaussian graphical models using subgraph perturbationsen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Ying, Oliver Kosut, and Alan S. Willsky. “Sampling from Gaussian Graphical Models Using Subgraph Perturbations.” 2013 IEEE International Symposium on Information Theory (July 2013).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorLiu, Yingen_US
dc.contributor.mitauthorWillsky, Alan S.en_US
dc.relation.journalProceedings of the 2013 IEEE International Symposium on Information Theoryen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsLiu, Ying; Kosut, Oliver; Willsky, Alan S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0149-5888
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record