dc.contributor.author | Liu, Ying | |
dc.contributor.author | Kosut, Oliver | |
dc.contributor.author | Willsky, Alan S. | |
dc.date.accessioned | 2014-10-21T17:02:47Z | |
dc.date.available | 2014-10-21T17:02:47Z | |
dc.date.issued | 2013-07 | |
dc.identifier.isbn | 978-1-4799-0446-4 | |
dc.identifier.issn | 2157-8095 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/91051 | |
dc.description.abstract | The problem of efficiently drawing samples from a Gaussian graphical model or Gaussian Markov random field is studied. We introduce the subgraph perturbation sampling algorithm, which makes use of any pre-existing tractable inference algorithm for a subgraph by perturbing this algorithm so as to yield asymptotically exact samples for the intended distribution. The subgraph can have any structure for which efficient inference algorithms exist: for example, tree-structured, low tree-width, or having a small feedback vertex set. The experimental results demonstrate that this subgraph perturbation algorithm efficiently yields accurate samples for many graph topologies. | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research (Grant FA9550-12-1-0287) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/ISIT.2013.6620676 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Sampling from Gaussian graphical models using subgraph perturbations | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Liu, Ying, Oliver Kosut, and Alan S. Willsky. “Sampling from Gaussian Graphical Models Using Subgraph Perturbations.” 2013 IEEE International Symposium on Information Theory (July 2013). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Information and Decision Systems | en_US |
dc.contributor.mitauthor | Liu, Ying | en_US |
dc.contributor.mitauthor | Willsky, Alan S. | en_US |
dc.relation.journal | Proceedings of the 2013 IEEE International Symposium on Information Theory | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Liu, Ying; Kosut, Oliver; Willsky, Alan S. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-0149-5888 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |