MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lossy compression of permutations

Author(s)
Wang, Da; Mazumdar, Arya; Wornell, Gregory W.
Thumbnail
DownloadWornell_Lossy compression.pdf (237.5Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We investigate the lossy compression of permutations by analyzing the trade-off between the size of a source code and the distortion with respect to Kendall tau distance, Spearman's footrule, Chebyshev distance and ℓ[subscript 1] distance of inversion vectors. We show that given two permutations, Kendall tau distance upper bounds the ℓ[subscript 1] distance of inversion vectors and a scaled version of Kendall tau distance lower bounds the ℓ[subscript 1] distance of inversion vectors with high probability, which indicates an equivalence of the source code designs under these two distortion measures. Similar equivalence is established for all the above distortion measures, every one of which has different operational significance and applications in ranking and sorting. These findings show that an optimal coding scheme for one distortion measure is effectively optimal for other distortion measures above.
Date issued
2014-06
URI
http://hdl.handle.net/1721.1/91133
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2014 IEEE International Symposium on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Wang, Da, Arya Mazumdar, and Gregory W. Wornell. “Lossy Compression of Permutations.” 2014 IEEE International Symposium on Information Theory (June 2014).
Version: Author's final manuscript
ISBN
978-1-4799-5186-4

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.