MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Remotely Activated Protein-Producing Nanoparticles

Author(s)
Schroeder, Avi; Goldberg, Michael Solomon; Kastrup, Christian; Wang, Yingxia; Jiang, Shan; Joseph, Brian J.; Levins, Christopher G.; Kannan, Sneha T.; Langer, Robert; Anderson, Daniel Griffith; ... Show more Show less
Thumbnail
DownloadAnderson_Remotely activated.pdf (3.018Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The development of responsive nanomaterials, nanoscale systems that actively respond to stimuli, is one general goal of nanotechnology. Here we develop nanoparticles that can be controllably triggered to synthesize proteins. The nanoparticles consist of lipid vesicles filled with the cellular machinery responsible for transcription and translation, including amino acids, ribosomes, and DNA caged with a photolabile protecting group. These particles served as nanofactories capable of producing proteins including green fluorescent protein (GFP) and enzymatically active luciferase. In vitro and in vivo, protein synthesis was spatially and temporally controllable, and could be initiated by irradiating micrometer-scale regions on the time scale of milliseconds. The ability to control protein synthesis inside nanomaterials may enable new strategies to facilitate the study of orthogonal proteins in a confined environment and for remotely activated drug delivery.
Date issued
2012-03
URI
http://hdl.handle.net/1721.1/91138
Department
David H. Koch Institute for Integrative Cancer Research at MIT; Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Schroeder, Avi, Michael S. Goldberg, Christian Kastrup, Yingxia Wang, Shan Jiang, Brian J. Joseph, Christopher G. Levins, Sneha T. Kannan, Robert Langer, and Daniel G. Anderson. “Remotely Activated Protein-Producing Nanoparticles.” Nano Lett. 12, no. 6 (June 13, 2012): 2685–2689.
Version: Author's final manuscript
ISSN
1530-6984
1530-6992

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.