Show simple item record

dc.contributor.authorGeneson, Jesse
dc.contributor.authorPrasad, Rohil
dc.contributor.authorTidor, Jonathan
dc.date.accessioned2014-10-23T16:44:22Z
dc.date.available2014-10-23T16:44:22Z
dc.date.issued2014-08
dc.date.submitted2013-08
dc.identifier.issn1077-8926
dc.identifier.urihttp://hdl.handle.net/1721.1/91152
dc.description.abstractAn (r,s)-formation is a concatenation of s permutations of r letters. If u is a sequence with r distinct letters, then let Ex(u,n) be the maximum length of any r-sparse sequence with n distinct letters which has no subsequence isomorphic to u. For every sequence u define fw(u), the formation width of u, to be the minimum s for which there exists r such that there is a subsequence isomorphic to u in every (r,s)-formation. We use fw(u) to prove upper bounds on Ex(u,n) for sequences u such that u contains an alternation with the same formation width as u. We generalize Nivasch's bounds on Ex((ab)[superscript t],n) by showing that fw((12…l)[superscript t]) = 2t − 1 and Ex((12…l)[superscript t],n) = n2[superscript [1 over (t−2)!]α(n)t−2±O(α(n)t−3)] for every l ≥ 2 and t ≥ 3, such that α(n) denotes the inverse Ackermann function. Upper bounds on Ex((12…l)[superscript t],n) have been used in other papers to bound the maximum number of edges in k-quasiplanar graphs on n vertices with no pair of edges intersecting in more than O(1) points. If u is any sequence of the form avav′a such that a is a letter, v is a nonempty sequence excluding a with no repeated letters and v′ is obtained from v by only moving the first letter of v to another place in v, then we show that fw(u) = 4 and Ex(u,n) = Θ(nα(n)). Furthermore we prove that fw(abc(acb)[superscript t]) = 2t + 1 and Ex(abc(acb)[superscript t],n) = n2[superscript [1 over (t−1)!]α(n)t−1±O(α(n)t−2)] for every t ≥ 2.en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship (Grant 1122374)en_US
dc.language.isoen_US
dc.publisherElectronic Journal of Combinatoricsen_US
dc.relation.isversionofhttp://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p24en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/en_US
dc.sourceElectronic Journal of Combinatoricsen_US
dc.titleBounding sequence extremal functions with formationsen_US
dc.typeArticleen_US
dc.identifier.citationGeneson, Jesse, Rohil Prasad, and Jonathan Tidor. "Bounding sequence extremal functions with formations." The Electronic Journal of Combinatorics Volume 21, Issue 3 (2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorGeneson, Jesseen_US
dc.contributor.mitauthorPrasad, Rohilen_US
dc.contributor.mitauthorTidor, Jonathanen_US
dc.relation.journalElectronic Journal of Combinatoricsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGeneson, Jesse; Prasad, Rohil; Tidor, Jonathanen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record