Show simple item record

dc.contributor.authorMacNamara, Shevarl
dc.contributor.authorStrang, Gilbert
dc.date.accessioned2014-10-27T16:17:58Z
dc.date.available2014-10-27T16:17:58Z
dc.date.issued2014-08
dc.date.submitted2012-11
dc.identifier.issn0036-1445
dc.identifier.issn1095-7200
dc.identifier.urihttp://hdl.handle.net/1721.1/91186
dc.description.abstractWhen the heat equation and wave equation are approximated by $\bm{u}_t = -\bm{K} \bm{u}$ and $\bm{u}_{tt} = -\bm{K} \bm{u}$ (discrete in space), the solution operators involve $e^{-\bm{K}t}$, $\sqrt{\bm{K}}$, $\cos(\sqrt{\bm{K}}t)$, and $\mathrm{sinc}(\sqrt{\bm{K}}t)$. We compute these four matrices and find accurate approximations with a variety of boundary conditions. The second difference matrix $\bm{K}$ is Toeplitz (shift-invariant) for Dirichlet boundary conditions, but we show why $e^{\bm{-Kt}}$ also has a Hankel (anti-shift-invariant) part. Any symmetric choice of the four corner entries of $\bm{K}$ leads to Toeplitz plus Hankel in all functions $f(\bm{K})$. Overall, this article is based on diagonalizing symmetric matrices, replacing sums by integrals, and computing Fourier coefficients.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1023152)en_US
dc.description.sponsorshipMathWorks, Inc.en_US
dc.description.sponsorshipFulbright Programen_US
dc.description.sponsorshipMIT Energy Initiative (Fellowship)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/120897572en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleFunctions of Difference Matrices Are Toeplitz Plus Hankelen_US
dc.typeArticleen_US
dc.identifier.citationStrang, Gilbert, and Shev MacNamara. “Functions of Difference Matrices Are Toeplitz Plus Hankel.” SIAM Review 56, no. 3 (January 2014): 525–546. © 2014, Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorStrang, Gilberten_US
dc.contributor.mitauthorMacNamara, Shevarlen_US
dc.relation.journalSIAM Reviewen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsStrang, Gilbert; MacNamara, Sheven_US
dc.identifier.orcidhttps://orcid.org/0000-0001-7473-9287
dspace.mitauthor.errortrue
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record