Show simple item record

dc.contributor.authorGu, Zhen
dc.contributor.authorAimetti, Alex A.
dc.contributor.authorWang, Qun
dc.contributor.authorDang, Tram T.
dc.contributor.authorZhang, Yunlong
dc.contributor.authorVeiseh, Omid
dc.contributor.authorCheng, Hao
dc.contributor.authorAnderson, Daniel Griffith
dc.contributor.authorLanger, Robert S
dc.date.accessioned2014-10-31T17:44:12Z
dc.date.available2014-10-31T17:44:12Z
dc.date.issued2013-05
dc.date.submitted2013-02
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/1721.1/91254
dc.description.abstractDiabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial “closed-loop” system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.en_US
dc.description.sponsorshipLeona M. and Harry B. Helmsley Charitable Trust (Grant 09PG-T1D027)en_US
dc.description.sponsorshipTayebati Family Foundationen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nn400630xen_US
dc.sourcePMCen_US
dc.titleInjectable Nano-Network for Glucose-Mediated Insulin Deliveryen_US
dc.typeArticleen_US
dc.identifier.citationGu, Zhen, Alex A. Aimetti, Qun Wang, Tram T. Dang, Yunlong Zhang, Omid Veiseh, Hao Cheng, Robert S. Langer, and Daniel G. Anderson. “Injectable Nano-Network for Glucose-Mediated Insulin Delivery.” ACS Nano 7, no. 5 (May 28, 2013): 4194–4201. © 2013 American Chemical Society.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorGu, Zhenen_US
dc.contributor.mitauthorAimetti, Alex A.en_US
dc.contributor.mitauthorWang, Qunen_US
dc.contributor.mitauthorDang, Tram T.en_US
dc.contributor.mitauthorZhang, Yunlongen_US
dc.contributor.mitauthorVeiseh, Omiden_US
dc.contributor.mitauthorCheng, Haoen_US
dc.contributor.mitauthorLanger, Roberten_US
dc.contributor.mitauthorAnderson, Daniel Griffithen_US
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsGu, Zhen; Aimetti, Alex A.; Wang, Qun; Dang, Tram T.; Zhang, Yunlong; Veiseh, Omid; Cheng, Hao; Langer, Robert S.; Anderson, Daniel G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5629-4798
dc.identifier.orcidhttps://orcid.org/0000-0003-4255-0492
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record