dc.contributor.author | Gu, Zhen | |
dc.contributor.author | Aimetti, Alex A. | |
dc.contributor.author | Wang, Qun | |
dc.contributor.author | Dang, Tram T. | |
dc.contributor.author | Zhang, Yunlong | |
dc.contributor.author | Veiseh, Omid | |
dc.contributor.author | Cheng, Hao | |
dc.contributor.author | Anderson, Daniel Griffith | |
dc.contributor.author | Langer, Robert S | |
dc.date.accessioned | 2014-10-31T17:44:12Z | |
dc.date.available | 2014-10-31T17:44:12Z | |
dc.date.issued | 2013-05 | |
dc.date.submitted | 2013-02 | |
dc.identifier.issn | 1936-0851 | |
dc.identifier.issn | 1936-086X | |
dc.identifier.uri | http://hdl.handle.net/1721.1/91254 | |
dc.description.abstract | Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial “closed-loop” system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days. | en_US |
dc.description.sponsorship | Leona M. and Harry B. Helmsley Charitable Trust (Grant 09PG-T1D027) | en_US |
dc.description.sponsorship | Tayebati Family Foundation | en_US |
dc.language.iso | en_US | |
dc.publisher | American Chemical Society (ACS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1021/nn400630x | en_US |
dc.source | PMC | en_US |
dc.title | Injectable Nano-Network for Glucose-Mediated Insulin Delivery | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Gu, Zhen, Alex A. Aimetti, Qun Wang, Tram T. Dang, Yunlong Zhang, Omid Veiseh, Hao Cheng, Robert S. Langer, and Daniel G. Anderson. “Injectable Nano-Network for Glucose-Mediated Insulin Delivery.” ACS Nano 7, no. 5 (May 28, 2013): 4194–4201. © 2013 American Chemical Society. | en_US |
dc.contributor.department | Harvard University--MIT Division of Health Sciences and Technology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemical Engineering | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.mitauthor | Gu, Zhen | en_US |
dc.contributor.mitauthor | Aimetti, Alex A. | en_US |
dc.contributor.mitauthor | Wang, Qun | en_US |
dc.contributor.mitauthor | Dang, Tram T. | en_US |
dc.contributor.mitauthor | Zhang, Yunlong | en_US |
dc.contributor.mitauthor | Veiseh, Omid | en_US |
dc.contributor.mitauthor | Cheng, Hao | en_US |
dc.contributor.mitauthor | Langer, Robert | en_US |
dc.contributor.mitauthor | Anderson, Daniel Griffith | en_US |
dc.relation.journal | ACS Nano | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Gu, Zhen; Aimetti, Alex A.; Wang, Qun; Dang, Tram T.; Zhang, Yunlong; Veiseh, Omid; Cheng, Hao; Langer, Robert S.; Anderson, Daniel G. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0001-5629-4798 | |
dc.identifier.orcid | https://orcid.org/0000-0003-4255-0492 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |