MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonendocytic Delivery of Functional Engineered Nanoparticles into the Cytoplasm of Live Cells Using a Novel, High-Throughput Microfluidic Device

Author(s)
Lee, Jungmin; Sharei, Armon Reza; Sim, Woo Young; Adamo, Andrea; Langer, Robert S; Jensen, Klavs F; Bawendi, Moungi G; ... Show more Show less
Thumbnail
DownloadJensen_Nonendocytic delivery.pdf (2.590Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The ability to straightforwardly deliver engineered nanoparticles into the cell cytosol with high viability will vastly expand the range of biological applications. Nanoparticles could potentially be used as delivery vehicles or as fluorescent sensors to probe the cell. In particular, quantum dots (QDs) may be used to illuminate cytosolic proteins for long-term microscopy studies. Whereas recent advances have been successful in specifically labeling proteins with QDs on the cell membrane, cytosolic delivery of QDs into live cells has remained challenging. In this report, we demonstrate high throughput delivery of QDs into live cell cytoplasm using an uncomplicated microfluidic device while maintaining cell viabilities of 80–90%. We verify that the nanoparticle surface interacts with the cytosolic environment and that the QDs remain nonaggregated so that single QDs can be observed.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/91465
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry; Koch Institute for Integrative Cancer Research at MIT
Journal
Nano Letters
Publisher
American Chemical Society (ACS)
Citation
Lee, Jungmin, Armon Sharei, Woo Young Sim, Andrea Adamo, Robert Langer, Klavs F. Jensen, and Moungi G. Bawendi. “Nonendocytic Delivery of Functional Engineered Nanoparticles into the Cytoplasm of Live Cells Using a Novel, High-Throughput Microfluidic Device.” Nano Lett. 12, no. 12 (December 12, 2012): 6322–6327.
Version: Author's final manuscript
ISSN
1530-6984
1530-6992

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.