MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching

Author(s)
McClain, Leslie Marie; Winkle, Cortney C.; Valtschanoff, Juli G.; Park, Charles S.; Maglione, Christopher; Gupton, Stephanie L.; ... Show more Show less
Thumbnail
DownloadWinkle-2014-A novel Netrin-l-sen.pdf (4.941Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/91533
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Journal of Cell Biology
Publisher
Rockefeller University Press, The
Citation
Winkle, C. C., L. M. McClain, J. G. Valtschanoff, C. S. Park, C. Maglione, and S. L. Gupton. “A Novel Netrin-1-Sensitive Mechanism Promotes Local SNARE-Mediated Exocytosis During Axon Branching.” The Journal of Cell Biology 205, no. 2 (April 28, 2014): 217–232.
Version: Final published version
ISSN
0021-9525
1540-8140

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.