MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modular matrices as topological order parameter by a gauge-symmetry-preserved tensor renormalization approach

Author(s)
He, Huan; Moradi, Heidar; Wen, Xiao-Gang
Thumbnail
DownloadPhysRevB.90.205114.pdf (1.971Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Topological order has been proposed to go beyond Landau symmetry breaking theory for more than 20 years. But it is still a challenging problem to generally detect it in a generic many-body state. In this paper, we will introduce a systematic numerical method based on tensor network to calculate modular matrices in two-dimensional systems, which can fully identify topological order with gapped edge. Moreover, it is shown numerically that modular matrices, including S and T matrices, are robust characterization to describe phase transitions between topologically ordered states and trivial states, which can work as topological order parameters. This method only requires local information of one ground state in the form of a tensor network, and directly provides the universal data (S and T matrices), without any nonuniversal contributions. Furthermore, it is generalizable to higher dimensions. Unlike calculating topological entanglement entropy by extrapolating, in which numerical complexity is exponentially high, this method extracts a much more complete set of topological data (modular matrices) with much lower numerical cost.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/91541
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review B
Publisher
American Physical Society
Citation
He, Huan, Heidar Moradi, and Xiao-Gang Wen. “Modular Matrices as Topological Order Parameter by a Gauge-Symmetry-Preserved Tensor Renormalization Approach.” Physical Review B 90.20 (November 2014): 1-7. © 2014 American Physical Society
Version: Final published version
ISSN
1098-0121
1550-235X

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.