Show simple item record

dc.contributor.authorBarbero, Roberto Juan
dc.contributor.authorCarnelli, Lino
dc.contributor.authorSimon, Anna
dc.contributor.authorKao, Albert
dc.contributor.authorMonforte, Alessandra d'Arminio
dc.contributor.authorRiccò, Moreno
dc.contributor.authorBianchi, Daniele
dc.contributor.authorBelcher, Angela M.
dc.date.accessioned2014-11-19T19:22:54Z
dc.date.available2014-11-19T19:22:54Z
dc.date.issued2013
dc.date.submitted2012-03
dc.identifier.issn1754-5692
dc.identifier.issn1754-5706
dc.identifier.urihttp://hdl.handle.net/1721.1/91613
dc.description.abstractIn this work, a biologically catalysed CO2 mineralization process for the capture of CO2 from point sources was designed, constructed at a laboratory scale, and, using standard chemical process scale-up protocols, was modelled and evaluated at an industrial scale. A yeast display system in Saccharomyces cerevisae was used to screen several carbonic anhydrase isoforms and mineralization peptides for their impact on CO2 hydration, CaCO3 mineralization, and particle settling rate. Enhanced rates for each of these steps in the CaCO3 mineralization process were confirmed using quantitative techniques in lab-scale measurements. The effect of these enhanced rates on the CO2 capture cost in an industrial scale CO2 mineralization process using coal fly ash as the CaO source was evaluated. The model predicts a process using bCA2-yeast and fly ash is [similar]10% more cost effective per tonne of CO2 captured than a process with no biological molecules, a savings not realized by wild-type yeast and high-temperature stable recombinant CA2 alone or in combination. The levelized cost of electricity for a power plant using this process was calculated and scenarios in which this process compares favourably to CO2 capture by MEA absorption process are presented.en_US
dc.description.sponsorshipMIT Energy Initiativeen_US
dc.description.sponsorshipEni S.p.A. (Firm)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH Biotechnology Training Program)en_US
dc.description.sponsorshipThomas and Stacey Siebel Foundationen_US
dc.language.isoen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/c2ee24060ben_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleEngineered yeast for enhanced CO2 mineralizationen_US
dc.typeArticleen_US
dc.identifier.citationBarbero, Roberto, Lino Carnelli, Anna Simon, Albert Kao, Alessandra d’Arminio Monforte, Moreno Riccò, Daniele Bianchi, and Angela Belcher. “Engineered Yeast for Enhanced CO2 Mineralization.” Energy & Environmental Science 6, no. 2 (2013): 660.en_US
dc.contributor.departmentDavid H. Koch Institute for Integrative Cancer Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineeringen_US
dc.contributor.mitauthorBarbero, Roberto Juanen_US
dc.contributor.mitauthorBelcher, Angela M.en_US
dc.relation.journalEnergy & Environmental Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBarbero, Roberto; Carnelli, Lino; Simon, Anna; Kao, Albert; Monforte, Alessandra d'Arminio; Riccò, Moreno; Bianchi, Daniele; Belcher, Angelaen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9353-7453
mit.licenseOPEN_ACCESS_POLICYen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record