MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Analytical Approximation of the Joint Distribution of Aggregate Queue-Lengths in an Urban Network

Author(s)
Wang, Carter; Osorio Pizano, Carolina
Thumbnail
DownloadOsorio-2012-An Analytical Approx.pdf (270.3Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
Traditional queueing network models assume infinite queue capacities due to the complexity of capturing interactions between finite capacity queues. Accounting for this correlation can help explain how congestion propagates through a network. Joint queue-length distribution can be accurately estimated through simulation. Nonetheless, simulation is a computationally intensive technique, and its use for optimization purposes is challenging. By modeling the system analytically, we lose accuracy but gain efficiency and adaptability and can contribute novel information to a variety of congestion related problems, such as traffic signal optimization. We formulate an analytical technique that combines queueing theory with aggregation-disaggregation techniques in order to approximate the joint network distribution, considering an aggregate description of the network. We propose a stationary formulation. We consider a tandem network with three queues. The model is validated by comparing the aggregate joint distribution of the three queue system with the exact results determined by a simulation over several scenarios. It derives a good approximation of aggregate joint distributions.
Date issued
2012-11
URI
http://hdl.handle.net/1721.1/91622
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Procedia - Social and Behavioral Sciences
Publisher
Elsevier
Citation
Osorio, Carolina, and Carter Wang. “An Analytical Approximation of the Joint Distribution of Aggregate Queue-Lengths in an Urban Network.” Procedia - Social and Behavioral Sciences 54 (October 2012): 917–925.
Version: Final published version
ISSN
18770428

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.