MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and Lithiation Mechanisms of Dirutile and Rutile LiMnF4: Two New Conversion Cathode Materials

Author(s)
Twu, Nancy H.; Li, Xin; Moore, Charles Jacob; Ceder, Gerbrand
Thumbnail
DownloadCeder_Synthesis and.pdf (1.699Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Driven by the need for new cathode battery materials with high energy density, fluorides have emerged as promising candidates due to their high voltages. From high throughput computations, dirutile LiMnF4 was identified as a promising cathode with a high conversion voltage and a theoretical specific capacity of 584 mAh/g. In this work, we study the formation of dirutile LiMnF4 through a new, low-temperature synthesis route and report its electrochemical properties. We also report the discovery of a new rutile polymorph of LiMnF4 which has Li-Mn disorder on the cation site. Electron diffraction confirmed both dirutile and rutile LiMnF4 to convert upon lithiation with different reaction paths. As seen with other fluoride materials, specific capacity is strongly linked with synthesis and processing conditions. With LiMnF4, there was a tradeoff in maintaining phase-pure samples and optimizing samples for high specific capacity. Still, even with very simple synthesis and electrode preparation methods, both rutile and dirutile polymorphs of LiMnF4 show electrochemical activity. Further optimization of particle morphology may enhance reaction kinetics and improve specific capacity.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/91662
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of the Electrochemical Society
Publisher
Electrochemical Society
Citation
Twu, N., X. Li, C. Moore, and G. Ceder. “Synthesis and Lithiation Mechanisms of Dirutile and Rutile LiMnF4: Two New Conversion Cathode Materials.” Journal of the Electrochemical Society 160, no. 11 (January 1, 2013): A1944–A1951. © 2013 The Electrochemical Society.
Version: Final published version
ISSN
0013-4651
1945-7111

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.