MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Resonant bonding leads to low lattice thermal conductivity

Author(s)
Lee, Sangyeop; Esfarjani, Keivan; Luo, Tengfei; Zhou, Jiawei; Tian, Zhiting; Chen, Gang; ... Show more Show less
Thumbnail
DownloadChen_Resonant bonding with figs and supp files.pdf (2.618Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Understanding the lattice dynamics and low thermal conductivities of IV–VI, V[subscript 2]–VI[subscript 3] and V materials is critical to the development of better thermoelectric and phase-change materials. Here we provide a link between chemical bonding and low thermal conductivity. Our first-principles calculations reveal that long-ranged interaction along the 〈100〉 direction of the rocksalt structure exist in lead chalcogenides, SnTe, Bi[subscript 2]Te[subscript 3], Bi and Sb due to the resonant bonding that is common to all of them. This long-ranged interaction in lead chalcogenides and SnTe cause optical phonon softening, strong anharmonic scattering and large phase space for three-phonon scattering processes, which explain why rocksalt IV–VI compounds have much lower thermal conductivities than zincblende III–V compounds. The new insights on the relationship between resonant bonding and low thermal conductivity will help in the development of better thermoelectric and phase change materials.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/91682
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Lee, Sangyeop, Keivan Esfarjani, Tengfei Luo, Jiawei Zhou, Zhiting Tian, and Gang Chen. “Resonant Bonding Leads to Low Lattice Thermal Conductivity.” Nature Communications 5 (April 28, 2014).
Version: Author's final manuscript
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.