MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice

Author(s)
Chen, Qian; Cichon, Joseph; Wang, Wenting; Qiu, Li; Lee, Seok-Jin R.; Campbell, Nolan R.; DeStefino, Nicholas; Fu, Zhanyan; Yasuda, Ryohei; Looger, Loren L.; Arenkiel, Benjamin R.; Gan, Wen-Biao; Feng, Guoping; ... Show more Show less
Thumbnail
DownloadChen-2012-Imaging Neural Activ.pdf (2.075Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The ability to chronically monitor neuronal activity in the living brain is essential for understanding the organization and function of the nervous system. The genetically encoded green fluorescent protein-based calcium sensor GCaMP provides a powerful tool for detecting calcium transients in neuronal somata, processes, and synapses that are triggered by neuronal activities. Here we report the generation and characterization of transgenic mice that express improved GCaMPs in various neuronal subpopulations under the control of the Thy1 promoter. In vitro and in vivo studies show that calcium transients induced by spontaneous and stimulus-evoked neuronal activities can be readily detected at the level of individual cells and synapses in acute brain slices, as well as chronically in awake, behaving animals. These GCaMP transgenic mice allow investigation of activity patterns in defined neuronal populations in the living brain and will greatly facilitate dissecting complex structural and functional relationships of neural networks.
Date issued
2012-10
URI
http://hdl.handle.net/1721.1/91895
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; McGovern Institute for Brain Research at MIT; Picower Institute for Learning and Memory
Journal
Neuron
Publisher
Elsevier
Citation
Chen, Qian, Joseph Cichon, Wenting Wang, Li Qiu, Seok-Jin R. Lee, Nolan R. Campbell, Nicholas DeStefino, et al. “Imaging Neural Activity Using Thy1-GCaMP Transgenic Mice.” Neuron 76, no. 2 (October 2012): 297–308. © 2012 Elsevier Inc.
Version: Final published version
ISSN
08966273
1097-4199

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.