MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

S[subscript n]-equivariant sheaves and Koszul cohomology

Author(s)
Yang, David H.
Thumbnail
Downloads40687-014-0010-9.pdf (187.2Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
http://creativecommons.org/licenses/by/2.0
Metadata
Show full item record
Abstract
Purpose: We give a new interpretation of Koszul cohomology, which is equivalent under the Bridgeland-King-Reid equivalence to Voisin's Hilbert scheme interpretation in dimensions 1 and 2 but is different in higher dimensions. Methods: We show that an explicit resolution of a certain S[subscript n]-equivariant sheaf is equivalent to a resolution appearing in the theory of Koszul cohomology. Results: Our methods easily show that the dimension K[subscript p,q](B,L) is a polynomial in d for L=dA+P with A ample and d large enough. Conclusions: This interpretation allows us to extract various pieces of information about asymptotic properties Kp,q for fixed p,q.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/91930
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Research in the Mathematical Sciences
Publisher
Springer
Citation
Yang, David H. “S n -Equivariant Sheaves and Koszul Cohomology.” Mathematical Sciences 1, no. 1 (December 2014).
Version: Final published version
ISSN
2197-9847

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.