MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates

Author(s)
Jandl, Adam Christopher; Bulsara, Mayank; Fitzgerald, Eugene A.
Thumbnail
DownloadFitzgerald_Materials properties.pdf (1.439Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The properties of InAs [subscript x]P1[subscript −x] compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10[superscript 6]/cm[superscript 2]) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10[superscript 5] cm[superscript −2] for films graded from the InP lattice constant to InAs [subscript 0.15]P[subscript 0.85]. A model for a two-energy level dislocation nucleation system is proposed based on our results.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/91951
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Applied Physics
Publisher
American Institute of Physics
Citation
Jandl, Adam, Mayank T. Bulsara, and Eugene A. Fitzgerald. “Materials Properties and Dislocation Dynamics in InAsP Compositionally Graded Buffers on InP Substrates.” Journal of Applied Physics 115, no. 15 (April 21, 2014): 153503. © 2014 AIP Publishing LLC.
Version: Final published version
ISSN
0021-8979
1089-7550

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.