MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival

Author(s)
Yi, Caroline H.; Pan, Heling; Seebacher, Jan; Jang, Il-Ho; Hyberts, Sven G.; Heffron, Gregory J.; Vander Heiden, Matthew G.; Yang, Renliang; Li, Fupeng; Locasale, Jason W.; Sharfi, Hadar; Zhai, Bo; Rodriguez-Mias, Ricard; Luithardt, Harry; Cantley, Lewis C.; Daley, George Q.; Asara, John M.; Gygi, Steven P.; Wagner, Gerhard; Liu, Chuan-Fa; Yuan, Junying; ... Show more Show less
Thumbnail
DownloadYi-2011-Metabolic Regulation.pdf (1.492Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Previous experiments suggest a connection between the N-alpha-acetylation of proteins and sensitivity of cells to apoptotic signals. Here, we describe a biochemical assay to detect the acetylation status of proteins and demonstrate that protein N-alpha-acetylation is regulated by the availability of acetyl-CoA. Because the antiapoptotic protein Bcl-xL is known to influence mitochondrial metabolism, we reasoned that Bcl-xL may provide a link between protein N-alpha-acetylation and apoptosis. Indeed, Bcl-xL overexpression leads to a reduction in levels of acetyl-CoA and N-alpha-acetylated proteins in the cell. This effect is independent of Bax and Bak, the known binding partners of Bcl-xL. Increasing cellular levels of acetyl-CoA by addition of acetate or citrate restores protein N-alpha-acetylation in Bcl-xL-expressing cells and confers sensitivity to apoptotic stimuli. We propose that acetyl-CoA serves as a signaling molecule that couples apoptotic sensitivity to metabolism by regulating protein N-alpha-acetylation.
Date issued
2011-08
URI
http://hdl.handle.net/1721.1/92075
Department
Massachusetts Institute of Technology. Department of Biology; Koch Institute for Integrative Cancer Research at MIT
Journal
Cell
Publisher
Elsevier
Citation
Yi, Caroline H., Heling Pan, Jan Seebacher, Il-Ho Jang, Sven G. Hyberts, Gregory J. Heffron, Matthew G. Vander Heiden, et al. “Metabolic Regulation of Protein N-Alpha-Acetylation by Bcl-xL Promotes Cell Survival.” Cell 146, no. 4 (August 2011): 607–620. © 2011 Elsevier Inc.
Version: Final published version
ISSN
00928674
1097-4172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.