Mechanical Fluidity of Fully Suspended Biological Cells
Author(s)
Maloney, John M.; Lehnhardt, Eric; Long, Alexandra F.; Van Vliet, Krystyn J.; Van Vliet, Krystyn J.; Maloney, John M.; ... Show more Show less
DownloadVan Vliet_Mechanical fluidity.pdf (1022.Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity—hysteresivity normalized to the extremes of an elastic solid or a viscous liquid—can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature—now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion.
Date issued
2013-10Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Biophysical Journal
Publisher
Elsevier
Citation
Maloney, John M., Eric Lehnhardt, Alexandra F. Long, and Krystyn J. Van Vliet. “Mechanical Fluidity of Fully Suspended Biological Cells.” Biophysical Journal 105, no. 8 (October 2013): 1767–1777. © 2013 Biophysical Society
Version: Final published version
ISSN
00063495
1542-0086