MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimality in the Development of Intestinal Crypts

Author(s)
Itzkovitz, Shaul Shalev; Blat, Irene C.; Clevers, Hans; van Oudenaarden, Alexander; Jacks, Tyler E.; van Oudenaarden, Alexander; ... Show more Show less
Thumbnail
DownloadItzkovitz-2012-Optimality in the De.pdf (1.086Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Intestinal crypts in mammals are comprised of long-lived stem cells and shorter-lived progenies. These two populations are maintained in specific proportions during adult life. Here, we investigate the design principles governing the dynamics of these proportions during crypt morphogenesis. Using optimal control theory, we show that a proliferation strategy known as a “bang-bang” control minimizes the time to obtain a mature crypt. This strategy consists of a surge of symmetric stem cell divisions, establishing the entire stem cell pool first, followed by a sharp transition to strictly asymmetric stem cell divisions, producing nonstem cells with a delay. We validate these predictions using lineage tracing and single-molecule fluorescence in situ hybridization of intestinal crypts in infant mice, uncovering small crypts that are entirely composed of Lgr5-labeled stem cells, which become a minority as crypts continue to grow. Our approach can be used to uncover similar design principles in other developmental systems.
Date issued
2012-02
URI
http://hdl.handle.net/1721.1/92250
Department
Massachusetts Institute of Technology. Department of Biology; Massachusetts Institute of Technology. Department of Physics; Koch Institute for Integrative Cancer Research at MIT
Journal
Cell
Publisher
Elsevier
Citation
Itzkovitz, Shalev, Irene C. Blat, Tyler Jacks, Hans Clevers, and Alexander van Oudenaarden. “Optimality in the Development of Intestinal Crypts.” Cell 148, no. 3 (February 2012): 608–619. © 2012 Elsevier Inc.
Version: Final published version
ISSN
00928674
1097-4172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.