MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Implications for Damage Recognition during Dpo4-Mediated Mutagenic Bypass of m1G and m3C Lesions

Author(s)
Rechkoblit, Olga; Delaney, James C.; Essigmann, John M.; Patel, Dinshaw J.; Essigmann, John M.
Thumbnail
DownloadRechkoblit-2011-Implications for Dam.pdf (1.622Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
DNA is susceptible to alkylation damage by a number of environmental agents that modify the Watson-Crick edge of the bases. Such lesions, if not repaired, may be bypassed by Y-family DNA polymerases. The bypass polymerase Dpo4 is strongly inhibited by 1-methylguanine (m1G) and 3-methylcytosine (m3C), with nucleotide incorporation opposite these lesions being predominantly mutagenic. Further, extension after insertion of both correct and incorrect bases, introduces additional base substitution and deletion errors. Crystal structures of the Dpo4 ternary extension complexes with correct and mismatched 3′-terminal primer bases opposite the lesions reveal that both m1G and m3C remain positioned within the DNA template/primer helix. However, both correct and incorrect pairing partners exhibit pronounced primer terminal nucleotide distortion, being primarily evicted from the DNA helix when opposite m1G or misaligned when pairing with m3C. Our studies provide insights into mechanisms related to hindered and mutagenic bypass of methylated lesions and models associated with damage recognition by repair demethylases.
Date issued
2011-06
URI
http://hdl.handle.net/1721.1/92256
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Department of Chemistry
Journal
Structure
Publisher
Elsevier
Citation
Rechkoblit, Olga, James C. Delaney, John M. Essigmann, and Dinshaw J. Patel. “Implications for Damage Recognition During Dpo4-Mediated Mutagenic Bypass of m1G and m3C Lesions.” Structure 19, no. 6 (June 2011): 821–832. © 2011 Elsevier Ltd.
Version: Final published version
ISSN
09692126
1848-4186

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.