Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Author(s)
Bessuille, J.; Brown, P.; Carbajo, S.; Dolgashev, Valery A.; Lin, H.; Murari, K.; Resta, G.; Tantawi, S.; Zapata, L. E.; Graves, William S.; Hong, Kyung-Han; Ihloff, Ernest E.; Khaykovich, Boris; Nanni, Emilio Alessandro; Kaertner, Franz X.; Moncton, David E.; ... Show more Show less
DownloadPhysRevSTAB.17.120701.pdf (7.779Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standing-wave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. The entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb∶YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×10[superscript 11] photons/second in a 5% bandwidth and the brilliance is 2 × 10[superscript 12] photons/(sec mm[superscript 2] mrad[superscript 2] 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.
Date issued
2014-12Department
Bates Linear Accelerator Center; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Nuclear Science; Massachusetts Institute of Technology. Research Laboratory of Electronics; MIT Nuclear Reactor LaboratoryJournal
Physical Review Special Topics - Accelerators and Beams
Publisher
American Physical Society
Citation
Graves, W. S., et al. "Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz." Phys. Rev. ST Accel. Beams 17, 120701 (December 2014).
Version: Final published version
ISSN
1098-4402