MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Thermodynamic Arrow-of-time and Quantum Mechanics

Author(s)
Maccone, Lorenzo
Thumbnail
DownloadMaccone-2011-The Thermodynamic Ar.pdf (146.4Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
I give an explanation of the thermodynamic arrow-of-time (namely entropy increases with time) within a quantum mechanical framework. This entails giving a solution to the Loschmidt paradox, i.e. showing how an irreversible macro-dynamics can arise from a reversible micro-dynamics. I argue that, in accordance to the reversible dynamics, both entropy-increasing and entropy-decreasing transformations take place, but entropy-decreasing transformations cannot leave any information of their having happened. This is indistinguishable from their not having happened at all. The second law of thermodynamics is then reduced to a tautology: the only transformations that can be seen are those where entropy does not decrease. However, typicality arguments seem to prevent this argument to be used as a complete solution to the arrow-of-time dilemma: it might still be necessary to postulate a low entropy initial state for the system under consideration.
Date issued
2011-02
URI
http://hdl.handle.net/1721.1/92300
Department
W. M. Keck Foundation Center for Extreme Quantum Information Theory
Journal
Electronic Notes in Theoretical Computer Science
Publisher
Elsevier B.V.
Citation
Maccone, Lorenzo. “The Thermodynamic Arrow-of-Time and Quantum Mechanics.” Electronic Notes in Theoretical Computer Science 270, no. 1 (February 2011): 75–79.
Version: Final published version
ISSN
15710661

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.