Show simple item record

dc.contributor.authorCanas, Guillermo D.
dc.contributor.authorPoggio, Tomaso A.
dc.contributor.authorRosasco, Lorenzo Andrea
dc.date.accessioned2014-12-16T14:51:47Z
dc.date.available2014-12-16T14:51:47Z
dc.date.issued2013-02
dc.identifier.issn1049-5258
dc.identifier.urihttp://hdl.handle.net/1721.1/92317
dc.description.abstractWe study the problem of estimating a manifold from random samples. In particular, we consider piecewise constant and piecewise linear estimators induced by k-means and k-flats, and analyze their performance. We extend previous results for k-means in two separate directions. First, we provide new results for k-means reconstruction on manifolds and, secondly, we prove reconstruction bounds for higher-order approximation (k-flats), for which no known results were previously available. While the results for k-means are novel, some of the technical tools are well-established in the literature. In the case of k-flats, both the results and the mathematical tools are new.en_US
dc.language.isoen_US
dc.publisherNeural Information Processing Systems Foundationen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLearning manifolds with k-means and k-flatsen_US
dc.typeArticleen_US
dc.identifier.citationCanas, Guillermo D., Tomaso Poggio, and Lorenzo A. Rosasco. "Learning manifolds with k-means and k-flats." Advances in Neural Information Processing Systems 25 (NIPS 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Center for Biological & Computational Learningen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorCanas, Guillermo D.en_US
dc.contributor.mitauthorPoggio, Tomaso A.en_US
dc.contributor.mitauthorRosasco, Lorenzo Andreaen_US
dc.relation.journalAdvances in Neural Information Processing Systems (NIPS)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsCanas, Guillermo D.; Poggio, Tomaso; Rosasco, Lorenzo A.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3944-0455
dc.identifier.orcidhttps://orcid.org/0000-0001-6376-4786
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record