MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorial molecular optimization of cement hydrates

Author(s)
Abdolhosseini Qomi, Mohammad; Krakowiak, Konrad J.; Bauchy, Mathieu; Stewart, K. L.; Shahsavari, Setareh; Jagannathan, D.; Brommer, Dieter Bresnan; Baronnet, A.; Buehler, Markus J.; Ulm, Franz-Josef; Van Vliet, Krystyn J.; Pellenq, Roland Jm; Yip, Sidney; ... Show more Show less
Thumbnail
DownloadVan Vliet_Combinatorial molecular.pdf (2.539Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Despite its ubiquitous presence in the built environment, concrete’s molecular-level properties are only recently being explored using experimental and simulation studies. Increasing societal concerns about concrete’s environmental footprint have provided strong motivation to develop new concrete with greater specific stiffness or strength (for structures with less material). Herein, a combinatorial approach is described to optimize properties of cement hydrates. The method entails screening a computationally generated database of atomic structures of calcium-silicate-hydrate, the binding phase of concrete, against a set of three defect attributes: calcium-to-silicon ratio as compositional index and two correlation distances describing medium-range silicon-oxygen and calcium-oxygen environments. Although structural and mechanical properties correlate well with calcium-to-silicon ratio, the cross-correlation between all three defect attributes reveals an indentation modulus-to-hardness ratio extremum, analogous to identifying optimum network connectivity in glass rheology. We also comment on implications of the present findings for a novel route to optimize the nanoscale mechanical properties of cement hydrate.
Date issued
2014-09
URI
http://hdl.handle.net/1721.1/92348
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering; Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Nature Communications
Publisher
Nature Publishing Group
Citation
Abdolhosseini Qomi, M.J., K.J. Krakowiak, M. Bauchy, K.L. Stewart, R. Shahsavari, D. Jagannathan, D.B. Brommer, et al. “Combinatorial Molecular Optimization of Cement Hydrates.” Nature Communications 5 (September 24, 2014): 4960.
Version: Final published version
ISSN
2041-1723

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.