MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bezier curve string method for the study of rare events in complex chemical systems

Author(s)
Bellucci, Michael A.; Trout, Bernhardt L.
Thumbnail
DownloadBézier curve string method for the study of rare events in complex chemical systems.pdf (3.756Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a new string method for finding the most probable transition pathway and optimal reaction coordinate in complex chemical systems. Our approach evolves an analytic parametric curve, known as a Bezier curve, to the most probable transition path between metastable regions in configuration space. In addition, we demonstrate that the geometric properties of the Bezier curve can be used to construct the optimal reaction coordinate near the most probable reaction path, and can further be used to devise a ranking vector capable of identifying precisely which collective variables are most important for governing the transition between metastable states. We discuss the algorithmic details of the Bezier curve string method, analyze its stability, accuracy and efficiency, and illustrate its capabilities using model potential energy functions. In particular, we use the degree elevation property of Bezier curves to develop an algorithm that adaptively learns the degree polynomial necessary to accurately represent the most probable transition path. Subsequently, we apply our method to the isomerization of alanine dipeptide, and demonstrate that the reaction coordinate obtained from the Bezier curve string method is in excellent agreement with the optimal reaction coordinate constructed from an aimless shooting and maximum likelihood procedure. Finally, we apply our method to a large complex system and study the homogenous nucleation of benzene from the melt. In these two examples, we illustrate that the ranking vector correctly identifies which collective variables govern these chemical transitions.
Date issued
2014-08
URI
http://hdl.handle.net/1721.1/92363
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
The Journal of Chemical Physics
Publisher
American Institute of Physics (AIP)
Citation
Bellucci, Michael A., and Bernhardt L. Trout. “Bezier Curve String Method for the Study of Rare Events in Complex Chemical Systems.” The Journal of Chemical Physics 141, no. 7 (August 21, 2014): 074110. © 2014 AIP Publishing LLC
Version: Final published version
ISSN
0021-9606
1089-7690

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.