Compressibility of electrospun fiber mats
Author(s)
Choong, Looh Tchuin; Mannarino, Matthew M.; Basu, Sandip; Rutledge, Gregory C.
DownloadChoong_compressibility_ms.pdf (2.958Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Compressive properties of electrospun fiber mats are reported for the first time. Mats of bisphenol-A polysulfone (PSU) and of poly(trimethyl hexamethylene terephthalamide) [PA 6(3)T] were electrospun and annealed over a range of temperatures spanning the glass transition temperature of each polymer. The data for applied stress versus mat solidity were found to be well-described by a power law of the form σ[subscript zz] = kE(ϕ[superscript n] − ϕ[n over 0]), where σ[subscript zz] is the applied stress and ϕ is solidity, in accord with the analysis of Toll (Polym Eng Sci 38(8):1337, 2004). The values of n range from 3.2 to 6 for PSU and from 8.0 to 20 for PA 6(3)T. The lowest values in each case were exhibited by mats annealed near the glass transition temperature of the fiber material. The values of n are independent of fiber diameter. The higher values of n are attributed to fiber slippage via a mechanism analogous to that of work hardening of metals. The values of kE can vary by an order of magnitude and were difficult to determine precisely, due to the nature of the power law and the inhomogeneity of the mats. The compressibility of electrospun mats in response to an applied stress is sufficiently large that it cannot be neglected in applications where large pressures may be involved, such as filtration or membrane separations. In addition to the initial solidity of the mats, the material compressibility and the operating pressure relevant to the application are important to describe the structure of electrospun mats quantitatively under conditions of use.
Date issued
2013-06Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Journal of Materials Science
Publisher
Springer-Verlag
Citation
Choong, Looh Tchuin, Matthew M. Mannarino, Sandip Basu, and Gregory C. Rutledge. “Compressibility of Electrospun Fiber Mats.” J Mater Sci 48, no. 22 (June 25, 2013): 7827–7836.
Version: Author's final manuscript
ISSN
0022-2461
1573-4803