MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressibility of electrospun fiber mats

Author(s)
Choong, Looh Tchuin; Mannarino, Matthew M.; Basu, Sandip; Rutledge, Gregory C.
Thumbnail
DownloadChoong_compressibility_ms.pdf (2.958Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Compressive properties of electrospun fiber mats are reported for the first time. Mats of bisphenol-A polysulfone (PSU) and of poly(trimethyl hexamethylene terephthalamide) [PA 6(3)T] were electrospun and annealed over a range of temperatures spanning the glass transition temperature of each polymer. The data for applied stress versus mat solidity were found to be well-described by a power law of the form σ[subscript zz] = kE(ϕ[superscript n] − ϕ[n over 0]), where σ[subscript zz] is the applied stress and ϕ is solidity, in accord with the analysis of Toll (Polym Eng Sci 38(8):1337, 2004). The values of n range from 3.2 to 6 for PSU and from 8.0 to 20 for PA 6(3)T. The lowest values in each case were exhibited by mats annealed near the glass transition temperature of the fiber material. The values of n are independent of fiber diameter. The higher values of n are attributed to fiber slippage via a mechanism analogous to that of work hardening of metals. The values of kE can vary by an order of magnitude and were difficult to determine precisely, due to the nature of the power law and the inhomogeneity of the mats. The compressibility of electrospun mats in response to an applied stress is sufficiently large that it cannot be neglected in applications where large pressures may be involved, such as filtration or membrane separations. In addition to the initial solidity of the mats, the material compressibility and the operating pressure relevant to the application are important to describe the structure of electrospun mats quantitatively under conditions of use.
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/92365
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Materials Science
Publisher
Springer-Verlag
Citation
Choong, Looh Tchuin, Matthew M. Mannarino, Sandip Basu, and Gregory C. Rutledge. “Compressibility of Electrospun Fiber Mats.” J Mater Sci 48, no. 22 (June 25, 2013): 7827–7836.
Version: Author's final manuscript
ISSN
0022-2461
1573-4803

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.