MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Theoretical Kinetics Study of the O([superscript 3]P) + CH[subscript 4]/CD[subscript 4] Hydrogen Abstraction Reaction: The Role of Anharmonicity, Recrossing Effects, and Quantum Mechanical Tunneling

Author(s)
Gonzalez-Lavado, Eloisa; Corchado, Jose C.; Suleimanov, Yury V.; Green, William H.; Espinosa-Garcia, Joaquin
Thumbnail
Download6.pdf (2.736Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Using a recently developed full-dimensional accurate analytical potential energy surface [Gonzalez-Lavado, E., Corchado, J. C., and Espinosa-Garcia, J. J. Chem. Phys. 2014, 140, 064310], we investigate the thermal rate coefficients of the O([superscript 3]P) + CH[subscript 4]/CD[subscript 4] reactions with ring polymer molecular dynamics (RPMD) and with variational transition-state theory with multidimensional tunneling corrections (VTST/MT). The results of the present calculations are compared with available experimental data for a wide temperature range 200–2500 K. In the classical high-temperature limit, the RPMD results match perfectly the experimental data, whereas VTST results are smaller by a factor of 2. We suggest that this discrepancy is due to the harmonic approximation used in the present VTST calculations, which leads to an overestimation of the variational effects. At low temperatures the tunneling plays an important role, which is captured by both methods, although they both overestimate the experimental values. The analysis of the kinetic isotope effects shows a discrepancy between both approaches, with the VTST values smaller by a factor about 2 at very low temperatures. Unfortunately, no experimental results are available to shed any light on this comparison, which keeps it as an open question.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/92389
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
The Journal of Physical Chemistry A
Publisher
American Chemical Society (ACS)
Citation
Gonzalez-Lavado, Eloisa, Jose C. Corchado, Yury V. Suleimanov, William H. Green, and Joaquin Espinosa-Garcia. “Theoretical Kinetics Study of the O([superscript 3]P) + CH[subscript 4]/CD[subscript 4] Hydrogen Abstraction Reaction: The Role of Anharmonicity, Recrossing Effects, and Quantum Mechanical Tunneling.” The Journal of Physical Chemistry A 118, no. 18 (May 8, 2014): 3243–3252.
Version: Author's final manuscript
ISSN
1089-5639
1520-5215

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.