MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

Author(s)
Rice, Daniel P.; Ribacke, Ulf; Silterra, Jacob; Deik, Amy A.; Moss, Eli L.; Broadbent, Kate M.; Neafsey, Daniel E.; Desai, Michael M.; Clish, Clary; Mazitschek, Ralph; Wirth, Dyann F.; Herman, Jonathan D.; ... Show more Show less
Thumbnail
Downloads13059-014-0511-2.pdf (2.373Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0
Metadata
Show full item record
Abstract
Background: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. Conclusions: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use.
Date issued
2014-11
URI
http://hdl.handle.net/1721.1/92449
Department
Harvard University--MIT Division of Health Sciences and Technology
Journal
Genome Biology
Publisher
BioMed Central Ltd
Citation
Herman, Jonathan D, Daniel P Rice, Ulf Ribacke, Jacob Silterra, Amy A Deik, Eli L Moss, Kate M Broadbent, et al. “A Genomic and Evolutionary Approach Reveals Non-Genetic Drug Resistance in Malaria.” Genome Biology 15, no. 11 (November 2014).
Version: Final published version
ISSN
1465-6906
1474-7596

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.