Show simple item record

dc.contributor.authorLeavitt, William D.
dc.contributor.authorCummins, Renata
dc.contributor.authorSchmidt, Marian L.
dc.contributor.authorOno, Shuhei
dc.contributor.authorBradley, Alexander S.
dc.contributor.authorJohnston, David T.
dc.contributor.authorSim, Min Sub
dc.date.accessioned2014-12-24T16:34:15Z
dc.date.available2014-12-24T16:34:15Z
dc.date.issued2014-11
dc.date.submitted2014-09
dc.identifier.issn1664-302X
dc.identifier.urihttp://hdl.handle.net/1721.1/92501
dc.description.abstractDissimilatory sulfate reduction serves as a key metabolic carbon remineralization process in anoxic marine environments. Sulfate reducing microorganisms can impart a wide range in mass-dependent sulfur isotopic fractionation. As such, the presence and relative activity of these organisms is identifiable from geological materials. By extension, sulfur isotope records are used to infer the redox balance of marine sedimentary environments, and the oxidation state of Earth's oceans and atmosphere. However, recent work suggests that our understanding of microbial sulfate reduction (MSRs) may be missing complexity associated with the presence and role of key chemical intermediates in the reductive process. This study provides a test of proposed metabolic models of sulfate reduction by growing an axenic culture of the well-studied MSRs, Desulfovibrio alaskensis strain G20, under electron donor limited conditions on the terminal electron acceptors sulfate, sulfite or thiosulfate, and tracking the multiple S isotopic consequences of each condition set. The dissimilatory reduction of thiosulfate and sulfite produce unique minor isotope effects, as compared to the reduction of sulfate. Further, these experiments reveal a complex biochemistry associated with sulfite reduction. That is, under high sulfite concentrations, sulfur is shuttled to an intermediate pool of thiosulfate. Site-specific isotope fractionation (within thiosulfate) is very large (34ε ~ 30‰) while terminal product sulfide carries only a small fractionation from the initial sulfite (34ε < 10‰): a signature similar in magnitude to sulfate and thiosulfate reduction. Together these findings show that microbial sulfate reduction (MSR) is highly sensitive to the concentration of environmentally important sulfur-cycle intermediates (sulfite and thiosulfate), especially when thiosulfate and the large site-specific isotope effects are involved.en_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (NASA-Exobiology)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF GRFP Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Career)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Instrument and facilities)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Low Temperature Geochemistry award)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fmicb.2014.00591en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleMultiple sulfur isotope signatures of sulfite and thiosulfate reduction by the model dissimilatory sulfate-reducer, Desulfovibrio alaskensis str. G20en_US
dc.typeArticleen_US
dc.identifier.citationLeavitt, William D., Renata Cummins, Marian L. Schmidt, Min S. Sim, Shuhei Ono, Alexander S. Bradley, and David T. Johnston. “Multiple Sulfur Isotope Signatures of Sulfite and Thiosulfate Reduction by the Model Dissimilatory Sulfate-Reducer, Desulfovibrio Alaskensis Str. G20.” Frontiers in Microbiology 5 (November 25, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciencesen_US
dc.contributor.mitauthorOno, Shuheien_US
dc.contributor.mitauthorSim, Min S.en_US
dc.relation.journalFrontiers in Microbiologyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLeavitt, William D.; Cummins, Renata; Schmidt, Marian L.; Sim, Min S.; Ono, Shuhei; Bradley, Alexander S.; Johnston, David T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1348-9584
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record