Show simple item record

dc.contributor.authorConstantine, Paul G.
dc.contributor.authorWang, Qiqi
dc.contributor.authorDow, Eric A.
dc.date.accessioned2014-12-29T22:22:45Z
dc.date.available2014-12-29T22:22:45Z
dc.date.issued2014-07
dc.date.submitted2014-04
dc.identifier.issn1064-8275
dc.identifier.issn1095-7197
dc.identifier.urihttp://hdl.handle.net/1721.1/92546
dc.description.abstractMany multivariate functions in engineering models vary primarily along a few directions in the space of input parameters. When these directions correspond to coordinate directions, one may apply global sensitivity measures to determine the most influential parameters. However, these methods perform poorly when the directions of variability are not aligned with the natural coordinates of the input space. We present a method to first detect the directions of the strongest variability using evaluations of the gradient and subsequently exploit these directions to construct a response surface on a low-dimensional subspace---i.e., the active subspace---of the inputs. We develop a theoretical framework with error bounds, and we link the theoretical quantities to the parameters of a kriging response surface on the active subspace. We apply the method to an elliptic PDE model with coefficients parameterized by 100 Gaussian random variables and compare it with a local sensitivity analysis method for dimension reduction.en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/130916138en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSociety for Industrial and Applied Mathematicsen_US
dc.titleActive Subspace Methods in Theory and Practice: Applications to Kriging Surfacesen_US
dc.typeArticleen_US
dc.identifier.citationConstantine, Paul G., Eric Dow, and Qiqi Wang. “Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces.” SIAM Journal on Scientific Computing 36, no. 4 (January 2014): A1500–A1524. © 2014 Society for Industrial and Applied Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorDow, Eric A.en_US
dc.contributor.mitauthorWang, Qiqien_US
dc.relation.journalSIAM Journal on Scientific Computingen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsConstantine, Paul G.; Dow, Eric; Wang, Qiqien_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9669-2563
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record