Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule
Author(s)
Sahu, Satyajit; Ghosh, Subrata K.; Fujita, Daisuke; Bandyopadhyay, Anirban
DownloadSahu-2014-Live visualizations.pdf (1.153Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, —fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, “common frequency point” is proposed as a tool to regulate protein complex related diseases in the future.
Date issued
2014-12Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Harvard University--MIT Division of Health Sciences and TechnologyJournal
Scientific Reports
Publisher
Nature Publishing Group
Citation
Sahu, Satyajit, Subrata Ghosh, Daisuke Fujita, and Anirban Bandyopadhyay. “Live Visualizations of Single Isolated Tubulin Protein Self-Assembly via Tunneling Current: Effect of Electromagnetic Pumping During Spontaneous Growth of Microtubule.” Sci. Rep. 4 (December 3, 2014): 7303.
Version: Final published version
ISSN
2045-2322