Show simple item record

dc.contributor.authorSumbul, Uygar
dc.contributor.authorZlateski, Aleksandar
dc.contributor.authorVishwanathan, Ashwin
dc.contributor.authorMasland, Richard H.
dc.contributor.authorSeung, H. Sebastian
dc.date.accessioned2015-01-07T21:47:59Z
dc.date.available2015-01-07T21:47:59Z
dc.date.issued2014-11
dc.date.submitted2014-07
dc.identifier.issn1662-5129
dc.identifier.urihttp://hdl.handle.net/1721.1/92750
dc.description.abstractThe shape and position of a neuron convey information regarding its molecular and functional identity. The identification of cell types from structure, a classic method, relies on the time-consuming step of arbor tracing. However, as genetic tools and imaging methods make data-driven approaches to neuronal circuit analysis feasible, the need for automated processing increases. Here, we first establish that mouse retinal ganglion cell types can be as precise about distributing their arbor volumes across the inner plexiform layer as they are about distributing the skeletons of the arbors. Then, we describe an automated approach to computing the spatial distribution of the dendritic arbors, or arbor density, with respect to a global depth coordinate based on this observation. Our method involves three-dimensional reconstruction of neuronal arbors by a supervised machine learning algorithm, post-processing of the enhanced stacks to remove somata and isolate the neuron of interest, and registration of neurons to each other using automatically detected arbors of the starburst amacrine interneurons as fiducial markers. In principle, this method could be generalizable to other structures of the CNS, provided that they allow sparse labeling of the cells and contain a reliable axis of spatial reference.en_US
dc.description.sponsorshipUnited States. Army Research Office (W911NF-12-1-0594)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (DARPA (HR0011-14-2-0004))en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH/NINDS)en_US
dc.description.sponsorshipHoward Hughes Medical Instituteen_US
dc.description.sponsorshipGatsby Charitable Foundationen_US
dc.description.sponsorshipHuman Frontier Science Program (Strasbourg, France)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fnana.2014.00139en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleAutomated computation of arbor densities: a step toward identifying neuronal cell typesen_US
dc.typeArticleen_US
dc.identifier.citationSümbül, Uygar, Aleksandar Zlateski, Ashwin Vishwanathan, Richard H. Masland, and H. Sebastian Seung. “Automated Computation of Arbor Densities: a Step Toward Identifying Neuronal Cell Types.” Front. Neuroanat. 8 (November 25, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorSumbul, Uygaren_US
dc.contributor.mitauthorZlateski, Aleksandaren_US
dc.contributor.mitauthorVishwanathan, Ashwinen_US
dc.relation.journalFrontiers in Neuroanatomyen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSümbül, Uygar; Zlateski, Aleksandar; Vishwanathan, Ashwin; Masland, Richard H.; Seung, H. Sebastianen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5901-7964
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record