Show simple item record

dc.contributor.authorBorodin, Alexei
dc.contributor.authorCorwin, Ivan
dc.date.accessioned2015-01-12T20:26:57Z
dc.date.available2015-01-12T20:26:57Z
dc.date.issued2014-06
dc.date.submitted2013-06
dc.identifier.issn1050-5164
dc.identifier.urihttp://hdl.handle.net/1721.1/92805
dc.description.abstractWe study the parabolic Anderson model in (1+1) dimensions with nearest neighbor jumps and space–time white noise (discrete space/continuous time). We prove a contour integral formula for the second moment and compute the second moment Lyapunov exponent. For the model with only jumps to the right, we prove a contour integral formula for all moments and compute moment Lyapunov exponents of all orders.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-10-56390)en_US
dc.language.isoen_US
dc.publisherInstitute of Mathematical Statisticsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1214/13-aap944en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceInstitute of Mathematical Sciencesen_US
dc.titleMoments and Lyapunov exponents for the parabolic Anderson modelen_US
dc.typeArticleen_US
dc.identifier.citationBorodin, Alexei, and Ivan Corwin. “Moments and Lyapunov Exponents for the Parabolic Anderson Model.” The Annals of Applied Probability 24, no. 3 (June 2014): 1172–1198. © 2014 Institute of Mathematical Statisticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.mitauthorBorodin, Alexeien_US
dc.relation.journalAnnals of Applied Probabilityen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBorodin, Alexei; Corwin, Ivanen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2913-5238
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record